Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.048
Filter
1.
Respir Res ; 25(1): 146, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555460

ABSTRACT

BACKGROUND: In chronic pulmonary diseases characterized by inflammation and airway obstruction, such as asthma and COPD, there are unmet needs for improved treatment. Quinolines is a group of small heterocyclic compounds that have a broad range of pharmacological properties. Here, we investigated the airway relaxant and anti-inflammatory properties of a novel quinoline (RCD405). METHODS: The airway relaxant effect of RCD405 was examined in isolated airways from humans, dogs, rats and mice. Murine models of ovalbumin (OVA)-induced allergic asthma and LPS-induced airway inflammation were used to study the effects in vivo. RCD405 (10 mg/kg) or, for comparisons in selected studies, budesonide (3 mg/kg), were administered intratracheally 1 h prior to each challenge. Airway responsiveness was determined using methacholine provocation. Immune cell recruitment to bronchi was measured using flow cytometry and histological analyses were applied to investigate cell influx and goblet cell hyperplasia of the airways. Furthermore, production of cytokines and chemokines was measured using a multiplex immunoassay. The expression levels of asthma-related genes in murine lung tissue were determined by PCR. The involvement of NF-κB and metabolic activity was measured in the human monocytic cell line THP-1. RESULTS: RCD405 demonstrated a relaxant effect on carbachol precontracted airways in all four species investigated (potency ranking: human = rat > dog = mouse). The OVA-specific IgE and airway hyperresponsiveness (AHR) were significantly reduced by intratracheal treatment with RCD405, while no significant changes were observed for budesonide. In addition, administration of RCD405 to mice significantly decreased the expression of proinflammatory cytokines and chemokines as well as recruitment of immune cells to the lungs in both OVA- and LPS-induced airway inflammation, with a similar effect as for budesonide (in the OVA-model). However, the effect on gene expression of Il-4, IL-5 and Il-13 was more pronounced for RCD405 as compared to budesonide. Finally, in vitro, RCD405 reduced the LPS-induced NF-κB activation and by itself reduced cellular metabolism. CONCLUSIONS: RCD405 has airway relaxant effects, and it reduces AHR as well as airway inflammation in the models used, suggesting that it could be a clinically relevant compound to treat inflammatory airway diseases. Possible targets of this compound are complexes of mitochondrial oxidative phosphorylation, resulting in decreased metabolic activity of targeted cells as well as through pathways associated to NF-κB. However, further studies are needed to elucidate the mode of action.


Subject(s)
Asthma , Bronchial Hyperreactivity , Quinolines , Rats , Mice , Humans , Animals , Dogs , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/drug therapy , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Bronchoalveolar Lavage Fluid , Asthma/metabolism , Lung/metabolism , Cytokines/metabolism , Quinolines/adverse effects , Chemokines/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation/pathology , Budesonide/pharmacology , Ovalbumin/toxicity , Mice, Inbred BALB C
2.
J Ethnopharmacol ; 302(Pt A): 115877, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36336223

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Stachytarpheta cayennensis (Verbenaceae) has been used in Brazilian traditional medicine to treat asthma and other respiratory diseases. AIMS OF THE STUDY: To investigate the effects of different doses of standardized hydro-ethanolic (SCH) and aqueous (SCA) extracts of aerial parts of S. cayennensis using a murine ovalbumin (OVA)-induced asthma model. MATERIALS AND METHODS: The major constituents of the plant extracts were identified and standardized by ultra-performance liquid chromatography coupled with mass spectrometry. Balb/c mice were challenged with OVA solution and treated concomitantly by intraperitoneal injection of standardized SCH or SCA extracts at 50, 100, and 200 mg/kg concentrations. OVA-challenged control animals were treated with either dexamethasone (OVA-DEX) or saline solution (OVA-SAL). After challenge, we assessed in vivo bronchial hyperresponsiveness, airway inflammation (number of cells), peribronchial inflammation (histological analysis) and production of OVA-specific IgE and interleukin (IL)-4, IL-5, and IL-13 (ELISA). RESULTS: Acteoside, isoacteoside, and ipolamiide were the major constituents of SCH and SCA. The respective concentrations of acteoside in SCH and SCA were 78 and 98 µg/mL, while those of ipolamiide were 30 and 19 µg/mL. Treatment with 200 mg/kg of SCH or SCA decreased IL-4, IL-5, and IL-13 in lung homogenates. These reductions were accompanied by a lower influx of inflammatory cells (eosinophils, lymphocytes, and macrophages) to the airways and lungs. In addition to the anti-inflammatory effects, administration of SCA, but not SCH, ameliorated the parameters of bronchial hyperresponsiveness and decreased levels of circulating OVA-specific IgE. CONCLUSION: The results presented herein demonstrate for the first time the anti-asthmatic activity of S. cayennensis extracts in a murine model, thereby supporting the ethnopharmacological uses of the plant.


Subject(s)
Anti-Asthmatic Agents , Bronchial Hyperreactivity , Verbenaceae , Mice , Animals , Anti-Asthmatic Agents/adverse effects , Interleukin-13 , Disease Models, Animal , Interleukin-5 , Bronchoalveolar Lavage Fluid , Bronchial Hyperreactivity/drug therapy , Ovalbumin/pharmacology , Mice, Inbred BALB C , Lung , Immunoglobulin E , Inflammation/drug therapy , Cytokines/pharmacology
3.
Br J Pharmacol ; 180(5): 667-680, 2023 03.
Article in English | MEDLINE | ID: mdl-35735078

ABSTRACT

BACKGROUND AND PURPOSE: Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH: A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream ß-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS: C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized ß-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS: Our work demonstrates the first biased PAR2 antagonist for ß-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.


Subject(s)
Asthma , Bronchial Hyperreactivity , Respiratory Hypersensitivity , Mice , Humans , Animals , Allergens , Receptor, PAR-2 , beta-Arrestins , Asthma/drug therapy , Respiratory Hypersensitivity/drug therapy , beta-Arrestin 1 , Inflammation/drug therapy , Mice, Inbred BALB C , Lung , Bronchial Hyperreactivity/drug therapy
4.
Allergol Immunopathol (Madr) ; 50(2): 115-123, 2022.
Article in English | MEDLINE | ID: mdl-35257554

ABSTRACT

OBJECTIVE: To evaluate the effect of a hydroethanolic extract of Momordica charantia L. ("bitter melon", Cucurbitaceae) leaves (MCHA) on ovalbumin (OVA)-induced asthma model. Balb/c mice were sensitized twice and challenged for 4 alternate days with OVA and then treated with MCHA (500 mg/kg) for 7 consecutive days. METHODS: Control groups received treatment with normal saline or dexamethasone (2 mg/kg) on the same day. We assessed in vivo bronchial hyperresponsiveness and ex-vivo inflammation and mucus production in bronchoalveolar lavage (BAL), lung homogenates, and lung tissue. RESULTS: MCHA significantly improved airway hyperresponsiveness near baseline levels. MCHA administration significantly improved airway and lung inflammation, demonstrated by decreased total and inflammatory cells in BAL, lower levels of IL-5 and IL-13 in lung homogenate, and fewer inflammatory cells in lung tissue. Additionally, MCHA significantly diminished goblet cells in lung tissue. CONCLUSIONS: Administration of a hydroethanolic extract of M. charantia leaves was effective in treating OVA-induced asthma in an animal model.


Subject(s)
Asthma , Bronchial Hyperreactivity , Momordica charantia , Animals , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Bronchoalveolar Lavage Fluid , Cytokines , Disease Models, Animal , Humans , Inflammation/drug therapy , Lung , Mice , Mice, Inbred BALB C , Ovalbumin
5.
Allergol. immunopatol ; 50(2): 115-123, mar. 03, 2022. tab, graf, ilus
Article in English | IBECS | ID: ibc-203106

ABSTRACT

Objective To evaluate the effect of a hydroethanolic extract of Momordica charantia L. (“bitter melon”, Cucurbitaceae) leaves (MCHA) on ovalbumin (OVA)-induced asthma model. Balb/c mice were sensitized twice and challenged for 4 alternate days with OVA and then treated with MCHA (500 mg/kg) for 7 consecutive days.Methods Control groups received treatment with normal saline or dexamethasone (2 mg/kg) on the same day. We assessed in vivo bronchial hyperresponsiveness and ex-vivo inflammation and mucus production in bronchoalveolar lavage (BAL), lung homogenates, and lung tissue.Results MCHA significantly improved airway hyperresponsiveness near baseline levels. MCHA administration significantly improved airway and lung inflammation, demonstrated by decreased total and inflammatory cells in BAL, lower levels of IL-5 and IL-13 in lung homogenate, and fewer inflammatory cells in lung tissue. Additionally, MCHA significantly diminished goblet cells in lung tissue.Conclusions Administration of a hydroethanolic extract of M. charantia leaves was effective in treating OVA-induced asthma in an animal model (AU)


Subject(s)
Animals , Male , Mice , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Momordica charantia , Disease Models, Animal , Mice, Inbred BALB C , Bronchoalveolar Lavage Fluid , Inflammation , Ovalbumin
7.
Allergol. immunopatol ; 50(3): 93-100, 2022. ilus, graf
Article in English | IBECS | ID: ibc-203455

ABSTRACT

Background Asthma is a lung disease that has influenced more than 350 million people worldwide. Airway smooth muscle (ASM) spasm leads to airway hyperresponsiveness (AHR) and bronchial obstruction, which are clinical manifestations of an asthma attack. Botulinum toxin (BTX) is a bacteria toxin that acts as muscle relaxant and may have therapeutic effects on AHR and asthma.Objective In this study, the effect of BTX on AHR and related gene expressions was evaluated.Material and Methods An asthma mice model was developed which was treated with BTX in two ways: intranasally (IN) and via nebulization (N) (0.01, 0.1, and 1 U/mL and 10 U/mL, respectively) on days 25, 27 and 29. AHR was evaluated on days 24, 26, 28, and 30, and gene expressions were evaluated for TrkA, TrkB, M1–M5, α7nAChR, TNF-α, and extracellular signal-regulated kinase 2 (ERK2) proteins. For histopathology of the lungs, perivascular and peribronchial inflammation, production of mucus, and goblet cell hyperplasia were studied.Results On day 24, treatment with BTX (for all doses) had no significant effect on AHR, but on days 26 and 28, AHR was decreased and this continued up to day 30 for all treated groups. Treatment with BTX had no significant effect on the gene expressions of TrkA, TrkB, M1–M5, α7nAChR, TNF-α, and ERK2 proteins, perivascular inflammation, peribronchial inflammation, hyperplasia of the goblet cell and production of mucus. Besides, mice administered with 10 mg/mL BTX perished. The BTX therapy controlled asthma attacks by decreasing AHR and relaxation of ASMs.Conclusion However, BTX had no significant effect on airway inflammation and production of mucus. While using BTX, it is necessary to prescribe safe doses in order to prevent adverse reactions (AU)


Subject(s)
Animals , Mice , Asthma/drug therapy , Botulinum Toxins/therapeutic use , Bronchial Hyperreactivity/drug therapy , Mice, Inbred BALB C , Myocytes, Smooth Muscle , Signal Transduction , Tumor Necrosis Factors/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism
8.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1105-L1118, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34668415

ABSTRACT

Increased insulin is associated with obesity-related airway hyperreactivity and asthma. We tested whether the use of metformin, an antidiabetic drug used to reduce insulin resistance, can reduce circulating insulin, thereby preventing airway hyperreactivity in rats with dietary obesity. Male and female rats were fed a high- or low-fat diet for 5 wk. Some male rats were simultaneously treated with metformin (100 mg/kg orally). In separate experiments, after 5 wk of a high-fat diet, some rats were switched to a low-fat diet, whereas others continued a high-fat diet for an additional 5 wk. Bronchoconstriction and bradycardia in response to bilateral electrical vagus nerve stimulation or to inhaled methacholine were measured in anesthetized and vagotomized rats. Body weight, body fat, caloric intake, fasting glucose, and insulin were measured. Vagally induced bronchoconstriction was potentiated only in male rats on a high-fat diet. Males gained more body weight, body fat, and had increased levels of fasting insulin compared with females. Metformin prevented development of vagally induced airway hyperreactivity in male rats on high-fat diet, in addition to inhibiting weight gain, fat gain, and increased insulin. In contrast, switching rats to a low-fat diet for 5 wk reduced body weight and body fat, but it did not reverse fasting glucose, fasting insulin, or potentiation of vagally induced airway hyperreactivity. These data suggest that medications that target insulin may be effective treatment for obesity-related asthma.


Subject(s)
Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Bronchoconstriction , Diet, High-Fat/adverse effects , Hyperinsulinism/prevention & control , Metformin/pharmacology , Obesity/complications , Animals , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/pathology , Bronchoconstrictor Agents/toxicity , Female , Glucose/metabolism , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Hyperinsulinism/pathology , Hypoglycemic Agents/pharmacology , Male , Methacholine Chloride/toxicity , Rats , Rats, Sprague-Dawley , Vagus Nerve/drug effects , Weight Gain
9.
Mol Med Rep ; 24(5)2021 11.
Article in English | MEDLINE | ID: mdl-34542166

ABSTRACT

Cycloastragenol (CAG), a secondary metabolite from the roots of Astragalus zahlbruckneri, has been reported to exert anti­inflammatory effects in heart, skin and liver diseases. However, its role in asthma remains unclear. The present study aimed to investigate the effect of CAG on airway inflammation in an ovalbumin (OVA)­induced mouse asthma model. The current study evaluated the lung function and levels of inflammation and autophagy via measurement of airway hyperresponsiveness (AHR), lung histology examination, inflammatory cytokine measurement and western blotting, amongst other techniques. The results demonstrated that CAG attenuated OVA­induced AHR in vivo. In addition, the total number of leukocytes and eosinophils, as well as the secretion of inflammatory cytokines, including interleukin (IL)­5, IL­13 and immunoglobulin E were diminished in bronchoalveolar lavage fluid of the OVA­induced murine asthma model. Histological analysis revealed that CAG suppressed inflammatory cell infiltration and goblet cell secretion. Notably, based on molecular docking simulation, CAG was demonstrated to bind to the active site of autophagy­related gene 4­microtubule­associated proteins light chain 3 complex, which explains the reduced autophagic flux in asthma caused by CAG. The expression levels of proteins associated with autophagy pathways were inhibited following treatment with CAG. Taken together, the results of the present study suggest that CAG exerts an anti­inflammatory effect in asthma, and its role may be associated with the inhibition of autophagy in lung cells.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/etiology , Autophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Sapogenins/pharmacology , Animals , Asthma/drug therapy , Asthma/metabolism , Autophagy-Related Proteins/antagonists & inhibitors , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/metabolism , Biomarkers , Biopsy , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Management , Disease Models, Animal , Disease Susceptibility , Female , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunohistochemistry , Inflammation Mediators/metabolism , Mice , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Sapogenins/chemistry , Structure-Activity Relationship
10.
Respir Res ; 22(1): 252, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34556106

ABSTRACT

Bronchial hyperresponsiveness is a typical, but non-specific feature of cough variant asthma (CVA). This study aimed to determine whether bronchial hyperresponsiveness may be considered as a predictor of CVA in non-smoking adults with chronic cough (CC). The study included 55 patients with CC and bronchial hyperresponsiveness confirmed in the methacholine provocation test, in whom an anti-asthmatic, gradually intensified treatment was introduced. The diagnosis of CVA was established if the improvement in cough severity and cough-related quality of life in LCQ were noted.The study showed a high positive predictive value of bronchial hyperresponsiveness in this population. Cough severity and cough related quality of life were not related to the severity of bronchial hyperresponsiveness in CVA patients. A poor treatment outcome was related to a low baseline capsaicin threshold and the occurrence of gastroesophageal reflux-related symptoms. In conclusion, bronchial hyperresponsiveness could be considered as a predictor of cough variant asthma in non-smoking adults with CC.


Subject(s)
Asthma/diagnosis , Bronchial Hyperreactivity/diagnosis , Bronchial Provocation Tests/methods , Cough/diagnosis , Aged , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Asthma/complications , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/etiology , Chronic Disease , Cohort Studies , Cough/drug therapy , Cough/etiology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies
11.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445491

ABSTRACT

In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.


Subject(s)
Bronchial Hyperreactivity/drug therapy , Methacholine Chloride/administration & dosage , Orthomyxoviridae Infections/complications , Ovalbumin/immunology , Pyroglyphidae/immunology , Airway Resistance/drug effects , Animals , Bronchial Hyperreactivity/etiology , Claudin-1/metabolism , Down-Regulation , Female , Influenza A virus/pathogenicity , Methacholine Chloride/pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Ovalbumin/administration & dosage , Treatment Outcome
12.
Int Immunopharmacol ; 96: 107782, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34022666

ABSTRACT

Immunoglobulin E (IgE) and mast cells play important roles in the pathogenesis of allergic asthma. Catalpol, an iridoid glycoside, exerts many biological functions including anti-inflammatory activities. Herein, we investigated catalpol to determine both its antiallergic effects on IgE/ovalbumin (OVA)-stimulated mouse bone marrow-derived mast cells and its therapeutic actions in murine allergic asthma. We found that catalpol dramatically suppressed IgE/OVA-induced mast cell degranulation. Meanwhile, 5 ~ 100 µM of catalpol neither affected the expression level of the high-affinity receptor of IgE (FcεRI) by mast cells nor induced mast cell apoptosis. In addition, mRNA expression levels of inflammatory enzymes including cyclooxygenase (COX)-1, COX-2, and 5-lipoxygenase were downregulated. Administration of catalpol also suppressed production of prostaglandin D2 (PGD2), interleukin (IL)-6, and IL-13, while not affecting tumor necrosis factor (TNF)-α production. Further, catalpol pretreatment significantly attenuated the FcεRI-mediated Akt signaling pathway. In mice with IgE/OVA-induced asthma, oral administration of catalpol remarkably suppressed the production of OVA-specific IgE, the development of airway hyperresponsiveness (AHR), and the infiltration of eosinophils and neutrophils into the lungs. Histological studies demonstrated that catalpol substantially inhibited the recruitment of mast cells and increased mucus production in lung tissues. Catalpol-treated mice had significantly lower levels of helper T cell type 2 (Th2) cytokines (IL-4, IL-5, and IL-13), PGD2, eotaxin-1, and C-X-C chemokine ligand-1 (CXCL1) in bronchoalveolar lavage fluid (BALF) than did the allergic group. Collectively, these results indicated that the suppressive effects of catalpol on degranulation and mediator generation by mast cells were beneficial in treating allergic asthma.


Subject(s)
Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Immunoglobulin E/toxicity , Iridoid Glucosides/pharmacology , Lung/drug effects , Mast Cells/immunology , Animals , Asthma/immunology , Asthma/pathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/pathology , Disease Models, Animal , Female , Lung/immunology , Lung/pathology , Mast Cells/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Ovalbumin/immunology , Primary Cell Culture
13.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L236-L247, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34009030

ABSTRACT

Obesity-related asthma often presents with more severe symptoms than non-obesity-related asthma and responds poorly to current treatments. Both insulin resistance and hyperinsulinemia are common in obesity. We have shown that increased insulin mediates airway hyperreactivity in diet-induced obese rats by causing neuronal M2 muscarinic receptor dysfunction, which normally inhibits acetylcholine release from parasympathetic nerves. Decreasing insulin with streptozotocin prevented airway hyperreactivity and M2 receptor dysfunction. The objective of the present study was to investigate whether pioglitazone, a hypoglycemic drug, prevents airway hyperreactivity and M2 receptor dysfunction in obese rats. Male rats fed a low- or high-fat diet were treated with pioglitazone or PBS by daily gavage. Body weight, body fat, fasting insulin, and bronchoconstriction and bradycardia in response to electrical stimulation of vagus nerves and to aerosolized methacholine were recorded. Pilocarpine, a muscarinic receptor agonist, was used to measure M2 receptor function. Rats on a high-fat diet had potentiated airway responsiveness to vagal stimulation and dysfunctional neuronal M2 receptors, whereas airway responsiveness to methacholine was unaffected. Pioglitazone reduced fasting insulin and prevented airway hyperresponsiveness and M2 receptor dysfunction but did not change inflammatory cytokine mRNA expression in alveolar macrophages. High-fat diet, with and without pioglitazone, had tissue-specific effects on insulin receptor mRNA expression. In conclusion, pioglitazone prevents vagally mediated airway hyperreactivity and protects neuronal M2 muscarinic receptor function in obese rats.


Subject(s)
Bronchial Hyperreactivity/drug therapy , Hyperinsulinism/drug therapy , Insulin/metabolism , Neurons/drug effects , Obesity/complications , Pioglitazone/pharmacology , Receptor, Muscarinic M2/metabolism , Animals , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/pathology , Diet, High-Fat/adverse effects , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Hyperinsulinism/pathology , Hypoglycemic Agents/pharmacology , Male , Neurons/metabolism , Neurons/pathology , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M2/genetics
14.
Mediators Inflamm ; 2021: 9725903, 2021.
Article in English | MEDLINE | ID: mdl-33883974

ABSTRACT

2,6-Bis-(4-hydroxyl-3-methoxybenzylidine) cyclohexanone (BHMC), a synthetic curcuminoid analogue, has been shown to exhibit anti-inflammatory properties in cellular models of inflammation and improve the survival of mice from lethal sepsis. We further evaluated the therapeutic effect of BHMC on acute airway inflammation in a mouse model of allergic asthma. Mice were sensitized and challenged with ovalbumin (OVA), followed by intraperitoneal administration of 0.1, 1, and 10 mg/kg of BHMC. Bronchoalveolar lavage fluid, blood, and lung samples were collected, and the respiratory function was measured. OVA sensitization and challenge increased airway hyperresponsiveness (AHR) and pulmonary inflammation. All three doses of BHMC (0.1-10 mg/kg) significantly reduced the number of eosinophils, lymphocytes, macrophages, and neutrophils, as well as the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) as compared to OVA-challenged mice. However, serum level of IgE was not affected. All three doses of BHMC (0.1-10 mg/kg) were effective in suppressing the infiltration of inflammatory cells at the peribronchial and perivascular regions, with the greatest effect observed at 1 mg/kg which was comparable to dexamethasone. Goblet cell hyperplasia was inhibited by 1 and 10 mg/kg of BHMC, while the lowest dose (0.1 mg/kg) had no significant inhibitory effect. These findings demonstrate that BHMC, a synthetic nonsteroidal small molecule, ameliorates acute airway inflammation associated with allergic asthma, primarily by suppressing the release of inflammatory mediators and goblet cell hyperplasia to a lesser extent in acute airway inflammation of allergic asthma.


Subject(s)
Asthma/drug therapy , Curcumin/analogs & derivatives , Cyclohexanones/therapeutic use , Acute Disease , Animals , Asthma/immunology , Asthma/pathology , Bronchial Hyperreactivity/drug therapy , Curcumin/therapeutic use , Cytokines/blood , Goblet Cells/drug effects , Goblet Cells/pathology , Immunoglobulin E/biosynthesis , Leukocytes/drug effects , Male , Mice , Mice, Inbred BALB C , Ovalbumin/immunology
15.
J Asthma ; 58(6): 808-818, 2021 06.
Article in English | MEDLINE | ID: mdl-32043903

ABSTRACT

Objective:Pyrostegia venusta (Ker-Gawl.) Miers (Bignoniaceae) is a perennial invasive vine, distributed worldwide. In folk medicine, its parts are used for the treatment of inflammatory respiratory diseases. Extracts of P. venusta have antioxidant, antimicrobial, and antinociceptive properties. The aim of this study was to evaluate the effects of two extracts (aqueous and hydroethanolic) of P. venusta in the treatment of asthma in an animal model.Methods: Balb/c mice were sensitized twice with ovalbumin (OVA) intraperitoneally (ip), one week apart, and after one week, challenged with OVA intranasally on four alternate days. Mice were treated ip with 300 mg/kg of aqueous or hydroethanolic extracts for seven consecutive days. Control groups received saline on the same days. Bronchial hyperresponsiveness, production of Th1 and Th2 cytokines, lung and airway inflammation, and antioxidant activity in lung tissue were assessed.Results: Treatment with aqueous extract significantly decreased bronchial hyperresponsiveness, measured by total and tissue resistance and elastance. The administration of hydroethanolic extract did not reduce bronchial hyperresponsiveness. In addition, both extracts significantly reduced total cell and eosinophil counts in bronchoalveolar lavage. Both extracts did not change significantly IL-4, IL-5, IL-9, IL-13, IFN-gamma, and TGF-beta levels. Of note, only the aqueous extract significantly increased the total antioxidant activity and reduced lung inflammation.Conclusion: Aqueous extract of P. venusta reduced bronchial hyperresponsiveness, lung and airway inflammation, probably via an antioxidant mechanism. These results demonstrate that P. venusta may have potential for asthma treatment.


Subject(s)
Antioxidants/pharmacology , Asthma/drug therapy , Bignoniaceae , Plant Extracts/pharmacology , Animals , Bronchial Hyperreactivity/drug therapy , Disease Models, Animal , Ethanol , Inflammation Mediators/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Th1 Cells/metabolism , Th2 Cells/metabolism , Water
16.
Molecules ; 25(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899766

ABSTRACT

Allergic rhinitis and asthma are common chronic allergic diseases of the respiratory tract, which are accompanied by immunoglobulin E (IgE)-mediated inflammation and the involvement of type 2 T helper cells, mast cells, and eosinophils. Cordyceps sinensis (Berk.) Sacc is a fungal parasite on the larva of Lepidoptera. It has been considered to be a health-promoting food and, also, one of the best-known herbal remedies for the treatment of airway diseases, such as asthma and lung inflammation. In the present study, we demonstrated the antiallergic rhinitis effect of Cs-4, a water extract prepared from the mycelium culture of Cordyceps sinensis (Berk) Sacc, on ovalbumin (OVA)-induced allergic rhinitis in mice and the anti-asthmatic effect of Cs-4 in a rat model of asthma. Treatment with Cs-4 suppressed the nasal symptoms induced in OVA-sensitized and challenged mice. The inhibition was associated with a reduction in IgE/OVA-IgE and interleukin (IL)-4/IL-13 levels in the nasal fluid. Cs-4 treatment also decreased airway responsiveness and ameliorated the scratching behavior in capsaicin-challenged rats. It also reduced plasma IgE levels, as well as IgE and eosinophil peroxidase levels, in the bronchoalveolar fluid. Cs-4 treatment completely suppressed the increases in IL-4, IL-5, and IL-13 levels in rat lung tissue. In conclusion, our results suggest that Cs-4 has the potential to alleviate immune hypersensitivity reactions in allergic rhinitis and asthma.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Cordyceps/chemistry , Mycelium/chemistry , Rhinitis, Allergic/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Asthma/blood , Asthma/complications , Asthma/physiopathology , Body Weight/drug effects , Bronchi/drug effects , Bronchial Hyperreactivity/blood , Bronchial Hyperreactivity/complications , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/physiopathology , Bronchoalveolar Lavage Fluid , Capsaicin/pharmacology , Cytokines/metabolism , Disease Models, Animal , Eosinophil Peroxidase/metabolism , Female , Histamine Release/drug effects , Immunization , Immunoglobulin E/blood , Mast Cells/drug effects , Mast Cells/metabolism , Methacholine Chloride/pharmacology , Mice, Inbred BALB C , Nasal Lavage , Ovalbumin/immunology , Rats, Sprague-Dawley , Rhinitis, Allergic/blood , Rhinitis, Allergic/complications , Skin/drug effects , Skin/pathology , Spleen/drug effects , Spleen/pathology , Trachea/drug effects , beta-N-Acetylhexosaminidases/metabolism
17.
Thorax ; 75(11): 918-927, 2020 11.
Article in English | MEDLINE | ID: mdl-32759385

ABSTRACT

INTRODUCTION: Eosinophils are critical in allergic disorders, and promoting eosinophil death effectively attenuates allergic airway inflammation. Ferroptosis is a recently described novel form of cell death; however, little is known about ferroptosis in eosinophils and related diseases. This study aimed to investigate the effects of ferroptosis-inducing agents (FINs) on eosinophil death and allergic airway inflammation, and to explore their potential synergistic effect with glucocorticoids (GCs). METHODS: Eosinophils isolated from the peripheral blood of humans or mice were incubated with FINs, and eosinophil ferroptosis was assessed. The in vivo effects of FINs alone or in combination with dexamethasone (DXMS) were examined in a mouse model of allergic airway inflammation. Bronchoalveolar lavage fluid and lung tissue were collected to examine airway inflammation. RESULTS: Treatment with FINs time and dose dependency induced cell death in human and mouse eosinophils. Interestingly, FINs induced non-canonical ferroptosis in eosinophils, which generated morphological characteristics unique to ferroptosis and was iron dependent but was independent of lipid peroxidation. The antioxidants glutathione and N-acetylcysteine significantly attenuated FIN-induced cell death. Treatment with FINs triggered eosinophil death in vivo and eventually relieved eosinophilic airway inflammation in mice. Furthermore, FINs exerted a synergistic effect with DXMS to induce eosinophil death in vitro and to alleviate allergic airway inflammation in vivo. CONCLUSIONS: FINs induced ferroptosis-like cell death of eosinophils, suggesting their use as a promising therapeutic strategy for eosinophilic airway inflammation, especially due to the advantage of their synergy with GCs in the treatment of allergic disorders.


Subject(s)
Bronchial Hyperreactivity/drug therapy , Eosinophils/cytology , Ferroptosis , Animals , Artesunate/pharmacology , Benzylamines/pharmacology , Bronchial Hyperreactivity/pathology , Bronchoalveolar Lavage Fluid/cytology , Dexamethasone/pharmacology , Drug Synergism , Eosinophils/pathology , Glucocorticoids/pharmacology , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Piperazines/pharmacology , Quinazolines/pharmacology
18.
Physiol Rep ; 8(16): e14555, 2020 08.
Article in English | MEDLINE | ID: mdl-32812392

ABSTRACT

BACKGROUND: This study was undertaken to test the hypothesis that the newly synthesized curcuminoids B2BrBC and C66 supplementation will overcome hyperoxia-induced tracheal hyperreactivity and impairment of relaxation of tracheal smooth muscle (TSM). MATERIALS AND METHODS: Rat pups (P5) were exposed to hyperoxia (>95% O2 ) or normoxia for 7 days. At P12, tracheal cylinders were used to study in vitro contractile responses induced by methacholine (10-8 -10-4 M) or relaxation induced by electrical field stimulation (5-60 V) in the presence/absence of B2BrBC or C66, or to study the direct relaxant effects elicited by both analogs. RESULTS: Hyperoxia significantly increased contraction and decreased relaxation of TSM compared to normoxia controls. Presence of B2BrBC or C66 normalized both contractile and relaxant responses altered by hyperoxia. Both, curcuminoids directly induced dose-dependent relaxation of preconstricted TSM. Supplementation of hyperoxic animals with B2BrBC or C66, significantly increased catalase activity. Lung TNF-α was significantly increased in hyperoxia-exposed animals. Both curcumin analogs attenuated increases in TNF-α in hyperoxic animals. CONCLUSION: We show that B2BrBC and C66 provide protection against adverse contractility and relaxant effect of hyperoxia on TSM, and whole lung inflammation. Both analogs induced direct relaxation of TSM. Through restoration of catalase activity in hyperoxia, we speculate that analogs are protective against hyperoxia-induced tracheal hyperreactivity by augmenting H2 O2 catabolism. Neonatal hyperoxia induces increased tracheal contractility, attenuates tracheal relaxation, diminishes lung antioxidant capacity, and increases lung inflammation, while monocarbonyl CUR analogs were protective of these adverse effects of hyperoxia. Analogs may be promising new therapies for neonatal hyperoxic airway and lung disease.


Subject(s)
Bronchial Hyperreactivity/drug therapy , Curcumin/analogs & derivatives , Hyperoxia/drug therapy , Muscle Relaxation , Muscle, Smooth/drug effects , Animals , Catalase/metabolism , Curcumin/pharmacology , Female , Lung/metabolism , Male , Muscle Contraction , Muscle, Smooth/physiology , Rats , Rats, Wistar , Trachea/cytology , Trachea/drug effects , Trachea/physiology , Tumor Necrosis Factor-alpha/metabolism
19.
Sci Rep ; 10(1): 10557, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601282

ABSTRACT

Eosinophilic bronchitis (EB) is a clinical disease characterized by chronic cough, airway eosinophil infiltration, and responsive to steroid therapy but with the absence of airway hyperreactivity (AHR). This study established an EB mouse model with all the above features. First, 42 mice were divided into 7 groups to investigate the optimal time interval between cough and AHR detections. Afterward, 28 mice were divided into the asthma, EB, normal saline (NS), and dexamethasone (DXM) groups. Mice were challenged using nasal drops of 200 µg ovalbumin (OVA), 10 µg OVA, NS, or intraperitoneal injections of 5 mg/kg of DXM one hour prior to 10 µg OVA challenge. Airway reactivity was measured 6 h after cough was observed. The frequency of coughs in the asthma and EB groups increased significantly compared to mice in the NS group. After DXM administration, frequency of coughs was significantly decreased compared to mice in the asthma and EB groups. Lung resistance in the asthma group was significantly higher compared to mice in the NS, EB, and DXM groups. Obvious airway eosinophilic inflammation in BALF and lung tissues were observed in the asthma and EB groups, while DXM administration could attenuate airway inflammatory infiltration. In summary, we developed a mouse EB model with all four clinical features of EB by the administration of 10 µg OVA nasal drops.


Subject(s)
Bronchitis/drug therapy , Bronchitis/physiopathology , Eosinophilia/drug therapy , Animals , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Bronchitis/metabolism , Bronchoalveolar Lavage Fluid , China , Dexamethasone/therapeutic use , Disease Models, Animal , Eosinophils/metabolism , Female , Lung/pathology , Mice, Inbred BALB C
20.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645931

ABSTRACT

Inhalations with brine solutions are old but underestimated add-ons to pharmacological treatments of inflammatory lung diseases. Although widely used, not all features underlying their action on the respiratory system have been explored. The aim of the present study was to elucidate the mechanism of the beneficial action of inhalations of brine solution from the 'Wieliczka' Salt Mine, a Polish health resort, in a murine model of non-atopic asthma. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by an intratracheal challenge of cognate hapten. All animals underwent 12 inhalation sessions with brine solution, pure water or physiological saline. Control mice were not inhaled. We found that brine inhalations reduced, as compared to non-inhaled mice, the typical asthma-related symptoms, like airway hyperreactivity (AHR), the infiltration of pro-inflammatory cells into the bronchial tree, and the inflammation of the airways at the level of pro-inflammatory cytokines IL-1α, IL-1ß and IL-6. The level of the anti-inflammatory IL-10 was elevated in brine-inhaled mice. Inhalations with pure water increased AHR, whereas saline had no influence, either on AHR or cytokine concentrations. These observations indicate that inhalations with a brine solution from the 'Wieliczka' Salt Mine diminish the asthma-related symptoms, mostly by reducing the inflammatory status and by decreasing AHR.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Inflammation/drug therapy , Salts/administration & dosage , Administration, Inhalation , Animals , Cytokines/metabolism , Dinitrofluorobenzene/pharmacology , Disease Models, Animal , Haptens/physiology , Lung/drug effects , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...